Physics‐based models of ground deformation and extrusion rate at effusively erupting volcanoes

نویسندگان

  • Kyle Anderson
  • Paul Segall
چکیده

[1] We present a model of effusive silicic volcanic eruptions which relates magma chamber and conduit physics to time‐dependent data sets, including ground deformation and extrusion rate. The model involves a deflating chamber which supplies Newtonian magma through a cylindrical conduit. Solidification is approximated as occurring at fixed depth, producing a solid plug that slips along its margins with rate‐dependent friction. Changes in tractions acting on the chamber and conduit walls are used to compute surface deformations. Given appropriate material properties and initial conditions, the model predicts the full evolution of an eruption, allowing us to examine the dependence of observables on initial chamber volume, overpressure, and volatile content. Employing multiple data sets in combination with a physics‐based model allows for better constraints on these parameters than is possible using kinematic idealizations. Modeling posteruptive deformation provides an improved constraint on the rate of influx into the magma chamber from deeper sources. We compare numerical results to analytical approximations and to data from the 2004–2008 eruption of Mount St. Helens. For nominal parameters the balance between magma chamber pressure and frictional resistance of the solid plug controls the evolution of the eruption, with little contribution from the fluid magma below the idealized crystallization depth. While rate‐dependent plug friction influences the time‐ dependent evolution of the eruption, it has no control on the final chamber pressure or extruded volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico

*Correspondence: Jacqueline T. Salzer, Department 2: Physics of the Earth, GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany e-mail: [email protected] The geometry of the volcanic conduit is a main parameter controlling the dynamics and the style of volcanic eruptions and their precursors, but also one of the main unknowns. Pre-eruptive signals that originat...

متن کامل

An InSAR-based survey of volcanic deformation in the central Andes

[1] We extend an earlier interferometric synthetic aperture radar (InSAR) survey covering about 900 remote volcanos of the central Andes (14 –27 S) between the years 1992 and 2002. Our survey reveals broad (10s of km), roughly axisymmetric deformation at 4 volcanic centers: two stratovolcanoes are inflating (Uturuncu, Bolivia, and Hualca Hualca, Peru); another source of inflation on the border ...

متن کامل

Studies of Volcanoes of Alaska by Satellite Radar Interferometry

Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes....

متن کامل

Superplasticity of a fine-grained Mg–1.5 wt% Gd alloy after severe plastic deformation

The strain rate sensitivity (SRS) of Mg–1.5 wt% Gd processed by conventional extrusion and 2 passes of simple shear extrusion (SSE) was investigated by shear punch testing. Shear punch tests were conducted at initial shear strain rates in the range of 0.003–0.3 s-1 and at temperatures in the range of 573–773 K. A fine-grained microstructure with an average grain size of about 2.5 µm, obtained a...

متن کامل

Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion

The gravitational deformation of volcanoes is largely controlled by ductile layers of substrata. Using numerical finite-element modelling we investigate the role of ductile layer thickness and viscosity on such deformation. To characterise Ž . Ž the deformation we introduce two dimensionless ratios; P volcano radiusrductile layer thickness and P viscosity of a b . ductile substratumrfailure str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011